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The spherically symmetric flows of an ideal gas are considered assuming that Newtonian gravitation
acts on the mass of gas. The problem of the decay of a special discontinuity is investigated by the
method of characteristic series, and exact solutions of the initial boundary-value problems of the non-
iinear integrodifferentiai partiai-differential system are constructed in the form of converging series. It
is proved that the particles of gas on the free gas-vacuum surface move as particles in the field of

attraction of a material noint situated at the centre of symmetrv and having a mass egual to the initial
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mass of gas. In the case when the gas and the vacuum are continuously adjacent to one another one can
prove a theorem of the existence and uniqueness of the solution for only rational adiabatic indices, and
one can show that for certain values of the gas-dynamic parameters the gas sphere disperses to infinity,
while in other cases the gas-vacuum boundary stops and the mass of gas begins to collapse.
Singularities of the solution on this boundary only appear at the instant of focusing, which can be
treated as the instant when the whole mass of gas collapses into the centre of gravity.

Problems similar to one mentioned have been considered previously, but without taking
gravitation into account. Using characteristic series in the neighbourhood of the boundary T
two-dimensional flows [1] and three-dimensional flows of an ideal gas adjacent to a region of a
gas at rest were constructed. The decay of an arbitrary discontinuity on a curvilinear surface
when the discontinuity in the gas density was greater than zero on both sides of the surface was
considered in [2]. By analysing the first terms of certain asymptotic expansions it was
concluded [3] that the free surface I}, moves with constant velocity for a certain time. The flow
that occurs as a result of the collapse of a one-dimensional cavity was investigated in [4]. When
1<y <3 the solution was constructed in the form of converging characteristic series in the
region from T to I, inclusive, and it was proved that the surface I, moves with constant
velocity for a certain time. This result was generalized to the case of two- and three-
dimensional flows in [5], and to three-dimensional flows when external mass forces act in [6].
In the case of a gravitating gas, adiabatic motions with uniform deformation, when the
velocities are linear functions of the coordinates, have been investigated in a large number of
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with varying density was obtained in explicit form in [7]. The dynamics of the adiabatic
motions of a gravitating gaseous ellipsoid were investigated in [8].
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1. FORMULATION OF THE PROBLEM OF THE DECAY OF A SPECIAL
DISCONTINUITY

Suppose that at an instant 1=0 a sphere ' of radius r° isolates from a vacuum an ideal
polytropic gas which gravitates in accordance with Newton’s law. At the instant ¢ =0 we know
the distributions of the gas parameters in the sphere u=u(r) is the gas velocity, p =p,(x) is the
gas dens1ty, and §=S§y(x) is the entropy, where x is the distance to the centre of the sphere T,
0<x<r°. The functions u, S, and p, are assumed to be analytic, and the gas density is
assumed to be greater than zero everywhere in the sphere, including py(x){.>0.

At the instant ¢ =0 motion of the gas begins, determined by these distributions Uy, S, and
p, and which will henceforth be called background flow. Simultaneously, at the instant ¢ =0,
the surface I is instantaneously demolished and part of the gravitating ideal gas begins to
disperse into the vacuum. The perturbations that occur in the background flow as a result of
the instantaneous removal of the surface T, propagate in the gas in the form of a rarefaction
wave, separated from the background flow by the boundary T, which is a surface of weak
discontinuity. The rarefaction wave touches the vacuum from the other side: pl,=0, where T
is the free surface which separates the rarefaction wave from the vacuum. It 'is required to
construct both the background flow and the rarefaction wave, and also to obtain the laws of
motion of I"and T,

The spherically symmetric flows of the gas considered are described by the following system
of equations [9]

P, +(pu, +2pul/x=0
1 G* ,
u,+uux+;px =F(x, 1), F(t, x)=—41t-x7_fr o(r, t)dr .
o

S, +uS, =0, p=S*pY/y, y=const>1

where p is the pressure and G is the gravitational constant.

To simplify our further analysis we will change from the system of integro-differential
equations (1.1) to a system of differential equations by introducing an additional unknown
function F(x, t). Differentiating F with respect to x and ¢ and taking the equation of continuity
into account, we obtain two differential equations for F

F,.=-2c'F + 4nGp, F,=4rGpu (1.2)

We can also take M =-x’G'F(t, x) as the new unknown function, and the equations for M
will then have the form

M, = 4nx?p, M, =-4nx*pu (1.3)

We will use the function F and Egs (1.2) in the problem of the decay of the discontinuity.
Moreover, we will also use Egs (1.3). System (1.1) and (1.2) obtained is overdefined: there are
five equations for four unknowns, but it can be shown by cross differentiation that it is
consistent,

It is convenient to take o =p" ™% as the unknown function instead of p. To construct the
background flow we need to solve the Cauchy problem for the system considered with the
following initial data

t=0, u=uy(x,), S=8(x), 6=0y(x) 1.4)

F=Fy(x)=-4n-% ero(r)dr
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If p,(x) is an analytic function, it can be shown that Fy(x) is also an analytic function, which
has no discontinuity at x=0. Since the system considered is a system of the Cauchy-
Kovalevskii type while the initial data are analytic functions, the Cauchy problem has an
analytic solution for small ¢ [10], which can be represented, for example, in the form of
converging series in powers of ¢ with coefficients which are analytic functions of x. Using this
solution one can uniquely construct (for example, in the form of series in powers of ¢) x,(f) and

Glr, = Go(t)9 u'r‘]= u0(’)9 S n = So(t) (15)

Here x,(z) is the law of motion of the surface of the weak discontinuity I3, which is the sonic
characteristic of the background flow, and ¢°, u°, S° are the values of the gas-dynamic
parameters in it. Henceforth we will assume that we know the following: the background flow,
the surface T, and ¢°, u°, $°. To construct the rarefaction wave we will make the following
replacement of variables: we will take 7 and o as the independent variables, and we will take x,
u, S and F as the unknown functions. The Jacobian of this transformation J=x,. We then

obtain the following system of equations

X, =u+ Y—'luoc+(y_1),caﬂ
X
-1 uc 2 2
Xoly _YT“‘%G”(Y'I)"“""7*;‘,—1520*“—55502 =x,F
xgS, +(u-x,)85=0 (1.6)

F =-2x"'"xF +4nG(u - x,)c¥0

The flow in the region between I and I, (the rarefaction wave) will be constructed as the
solution of system of (1.6) with the data on the characteristic I} (1.5). Since T is a character-
istic of multiplicity one, to obtain a unique locally analytic solution we need to specify one
additional condition [11]. If the surface I' is removed slowly, the following relation serves as
this condition in the space of variables (o, t) [4-6]

x(0, 6)=r° (1.7)

2. CONSTRUCTION OF THE RAREFACTION WAVE

Theorem 1. When 0<t<t, in a certain neighbourhood of I, there is a unique locally
analytic solution of problem (1.5)-(1.7) on the decay of the discontinuity.

The proof of the theorem reduces [4-6] to the corresponding analogue of the Cauchy-
Kovalevskii theorem [11].

To investigate the question of whether the surface T, lies in the region in which this solution
is applicable, we will expand the solution of problem (1.5)—(1.7) in series in powers of ¢

f(t, o)=L, (o)* k! f={x, u, S, F) 1)
which, for small ¢, is possible in view of the analytic form of the solution of the problem of the

decay in a certain neighbourhood of I}. Here and henceforth the summation is carried out
over k from zero to infinity.

We will put =0 in (1.6) and, taking (1.7) into account, we will have

x) =—2aO'S0 +u,, Uy =—£—IGSO +u,, SO =Sm =S0(r0)



270 S. L. Deryabin and N. P. Chuyev

S0 (r®)0o (r°) + o (r°), 200= %

2

u.='Y—1

F= —20-1«;,(u. —205,0) - 4nGS,6>*
r

R = —4n—-?—2-?r2po(r)dr
(r") o

We differentiate (1.6) & times with respect to ¢, put =0, and taking (1.7) and the expressions
previously obtained for f(o) (0=<1<k) into account, we have

-1
Xis =Wy "'1‘5“0“1«: +Gy (0)
Gukc —Gkuk = sz(o), GSkﬁ - 2akSk = G3,,(0'), F‘k-ﬂ = G4k (0)
Here Gy, ..., G, are functions which depend on f(0) (0=<1<k), but they will not be

given here in view of their complexity.
Integrating the second and third equations of the system we obtain

U, = ouk(uko + I sz (O)G—ak—ldc)
S, =6 (8,0 +] G5 (0)072%* ' do) 22)
The arbitrary constants u,, and S,, are found from conditions (1.5). To do this we substitute
o’(r) into the right-hand side of (2.2), and «°(f) and S°(¢) into the left-hand sides. Expanding

the expressions obtained in powers of ¢ and equating the coefficients of like powers we obtain
relations from which u,, and S, are uniquely determined.

Lemma. When 1<y <3 the coefficients of series (2.1) when k=1 have the form

S, =0R, (0, 6", 6lno), F, =a, +GPy, (0, o, Glno)

A
U, =a,_, +OP, (G, 6", 6Ing), X, =a,_ +0Py (0, 6*, Glno)

where P, ..., P, are polynomials of the arguments indicated, and A >0, a, =const.

The proof of the lemma is similar to the corresponding proof from [4-6] and is carried out
by induction over k. It is first proved that G, (o) possess the required structure, and it is then
shown by direct integration that u, possess the structure indicated.

On the basis of the lemma we can assert that the structure of the solution which specifies the
rarefaction wave, is as follows:

S=as8'(t, 6), x=x’(+ox'(t, 0)
u=u'@®+ou'(t, 6), F=F(t)+0oF'(, 0)
Here

FOOy=Sar* 1k, u’(@)=3Tap """ 1 k+1)!

L) =S a, " 1 (k+2)!

The convergence of the series for F°(f), u’(r), x°(t), like the convergence of all the series
(2.1), is established by the following theorem.
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Theorem 2. For 1<y <3 when 0<! <1, the region of convergence of series (2.1), and also of
the series which specify f, and f,, covers the whole flow region from T to I, inclusive. The
law of motion of I,:x=x"(¢) is then found from the solution of the auxiliary problem
2 =1, »°O)=r°

D= P, l0)=u =Y—?_‘;‘So(r0)00(ro)+“o("o) (23)

o_ 2u°F° - G ! 2
Fl=- s F°0)=F, ~4n(r0)2 ir po(r)dr
and the initial value of the entropy S |, = S;(x) k.= S,(*°) is conserved on the surface T,

The proof of the theorem is similar to the proof in [4-6).

An analysis of the coefficients of series (2.1) shows that x°(f) can also be obtained without
constructing the whole solution of problem (1.5)-(1.7). It is sufficient to construct the solution
of the auxiliary problem (2.3) in the form of a formal series in powers of 7. Since x°(0)=r">0,
problem (2.3) has a unique locally analytic solution, which once again proves the convergence
of the series specifying x°(f). A detailed investigation of problem (2.3) will be carried out
below.

3. THE PROBLEM OF A GAS CONTINUOUSLY ADJACENT TO A VACUUM

In order to determine the instant of time up to which the law of motion of T, is conserved,
we will investigate the problem of a gas that is continuously adjacent to a vacuum, If we have
the solution of the problem of the decay of a discontinuity, ie. if we know, in particular, the
quantities o(t,, x), u(ly, x), S(t, x), and o(t,, x)|,=0 at the instant t=1,>0, we can postulate
the Cauchy problem at t =1, with these initial data for system (1.1) and (1.3). If the solution of
this problem exists, we can use it to determine the law of motion of I} in implicit form o(z,
x)=0 when 7>, Here it is natural to assume that the perturbations that occur from the
focusing of the weak discontinuity or from possible strong discontinuities in the middle part of
the flow, do not reach T,

Suppose x =x,(?) is the law of motion of the free surface T, obtained from the solution of
system (2.3). We will introduce the new independent variable z=x- x,(t), i.e. we will take the
surface T as the coordinate axis z=0, System (1.1) and (1.3) can then be rewritten in the form

¥—1 us

0',+(zé—x0,)cz+-—2—uzc+{y--l)z+xo =0 3.1
2 200 2. GM

+(u— +——8"00, +—55,0° + =0
ut (u th)uz Y—I 2 ,Y Z (Z+x0)
S, +(u—x4,)S, =0, M, =4n(z+x5)20>'0"D
We specified the following conditions for system (3.1) on the surface T, for z=0
o(t, 0)=0, u@, 0)=ul(r), S, 0)=Sy, M(t, 0)= My (32)

Here M, is the initial mass of gas S,=35("), and &’(t) is the velocity of motion of the
surface I, in the problem of the decay of the discontinuity. Problem (3.1), (3.2) is a
characteristic Cauchy problem, and the multiplicity of the characteristic z=0 is three, Hence,
for the solution to be unique it is necessary [11] to specify the initial data

o(ty, 2)=0"(2), ulty, 2)=1"(2), Sty, =5 (3.3)
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which agrees at the point t =1,, z=0 with the data of (3.2).

System (3.1) is not analytic for arbitrary y>1, so that we cannot construct a solution in the
neighbourhood of T, which uses analogues of the Cauchy-Kovalevskii theorem. Nevertheless,
we can write and investigate systems describing the behaviour of the gas-dynamic parameters
and their derivatives with respect to the variable z at z=0.

We put z=0 in (3.1), and, taking (3.2) into account, we will have the system

xor = ug (), x(tg)=%on; tp, =~GM I x}(1), ulty)=u,

which is equivalent to system (2.3) and is written using the mass of gas instead of F. This
system describes the motion of I}, and the behaviour of the gas-dynamic parameters on it.
Integrating (3.4) using the initial conditions we obtain

ug(t) = {2(}5!9(, fxo(t)'}-uw}m, Ugy = uf - uf,,, ui =2GMy f x5

Hence we can conclude that if u? =ul, the gaseous sphere will expand to infinity; if w’ <uZ,
then at ¢ =t. the free surface T, stops at the point x. = xof1— (1 /u.)*]", and the mass of gas
begins to collapse. The specific form of x(f) and # will not be given here because of its
complexity.

Integrating system (3.1) with respect to z and putting z=0 we obtain a system of transport
equations.

After making the replacement of variable y= exp(/ 1, Uy dt) we have

- PR
) =Oyoy D2y 3.5

- 2M, 2 -
¥ 2[}’3 B y)= - 8502 ()XY 2 (1)
xo 'Y - 1

The solution of the second equation of (3.5) will be sought for the initial data y{5,)=1,
¥ito) = (1)

An analytic investigation of the solutions of system (3.5) involves considerable difficulties,
so a solution was found by numerical methods. We obtained that both when the gas disperses
to infinity, and when the initially dispersing gaseous sphere collapses, no singularities occur on
the free surface, with the exception of the instant of time which can be treated as the instant
when the whole mass of gas collapses. Calculations showed that the minimum of the derivative
of the velocity of the gas on T, with respect to x is reached later than the instant when the gas
stops and when reverse motion of the free surface occurs (see Fig. 1).

It is impossible to construct systems describing the behaviour of the following derivatives of
the gas-dynamic parameters on I, with respect to z for arbitrary values of y>1, since in the
fourth equation of system (3.1) negative powers of ¢ appear after the differentiation with
respect to z. Hence, analytic solution of the problem of a gas continuously adjacent to a
vacuum can only be constructed for rational values of y. Then, without loss of generality, we
can assume that 2/(y-1)=m/n, where mand n are natural numbers.

We will introduce a new unknown function C=¢"". Hence 6=C", ¢,=nC"'C, o©,=
nC™'C,. Conditions (3.2) and (3.3) then become

C(t, 0)=0, u(t, 0)=u"(), 5@, 0)=Sp, M(t, 0)=My (3.6)
C(ty, 2)=C"(2), ulty, 2)=u’(z), St =502 (37)

System (3.1) converts into the analytic system
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1 2 Cu
C, +(u—x0,)Cz+~'-'-Cuz +;l—z+xo =0 (3.8)
2m GM
2 ~2n-1 2n =
- +———C"SS, + ———— =0
U, + (u—xo, )4, +mS-C"°C, o A (Z+xo)2

S, +(u—xq,)S, =0, M, =4m(z+x)*C™
for which the following theorem holds.

Theorem 3. For t, <t <t. problem (3.6)-(3.8) has a unique locally analytic solution, which can
be represented in the form

gt, =Yg, " 1k, g=(C, u, S, M}

The proof of this theorem reduces to the corresponding analogue of the Cauchy-
Kovalevskii theorem [11]. Problem (3.6), (3.8) is the characteristic Cauchy problem with data
on the characteristic of multiplicity three, and hence to construct a unique locally analytic
solution we need to specify three additional conditions. These conditions are the initial data
3.7.

To investigate problem (3.6)-(3.8) and to obtain the instants of time at which singularities
occur on I, we will consider the equations for g,(f).

We put z=0 in system (3.8) and, using conditions (3.6), we obtain system (3.4) for g,(t).

We integrate system (3.8) with respect to z and put z=0. We then obtain a system of trans-
port equations

c, +(1+—1-)C1u, L2000
n n xy(t)
uy, +ul =2GMyx33 (1), S, +u1,8, =0 (3.9)

If we introduce the new unknown function Y=exp(I:°uldt), the second equation will have
the form
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Y, =2Mgx3> ()Y

Integrating this we obtain

todt
Y=u,(t){] A+Bf—— |, A, B=const
’ [ f{,uéml

At the instant of time 7=t the integral has a singularity, but the function Y =Y(r) itself at
this instant of time is finite and has no singularities. Hence, we can conclude that the
singularities of the solution of the system of transport equations are identical with the
singularities of the solution of system (3.4), i.e. with the instant of focusing of the surface T},.

Integrating system (3.8) with respect to z & times, putting z=0, and using (3.6) and the
previously derived relations g,(c), (0=<1<k), we obtain

k
th +(1+;)C1uk +(k+l)cku] + 2 ‘xo{ Ck = Q”t(‘)
n

n x
uk, + (k + l)u,uk = Qz,‘ (t), Skt + (k + l)u,Sk = Q3k (t) (3_10)
My = Qq (1)

We will not give the specific form of the right-hand sides of the equations here in view of
their length.

Systems (3.10) are linear, and hence the singularities of the solutions of these systems are
identical with the singularities of the solutions of system (3.4). Consequently, the law of motion
of the free surface I, is conserved up to an instant of time which can be treated as the instant
when the whole mass of gas collapses towards the centre of symmetry, if, of course, no
singularities arise in the middle part of the flow.

We wish to thank A. F. Sidorov and S. P. Bautin for discussing this paper.
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